金沙js77999t)称为密度函数

当前位置:金沙js77999送彩金 > 金沙js77999 > 金沙js77999t)称为密度函数
作者: 金沙js77999送彩金|来源: http://www.sbzyzs.com|栏目:金沙js77999

文章关键词:金沙js77999送彩金,正则条件概率

  正则系综,是组成系综的系统是由N个粒子组成的,同温度为T的很大的热源相接触并达到热平衡。也可以这样设想:取大数M个体积为V、粒子数为N 的相同的系统构成系综。

  热力学的基础当然是热力学三定律。从热力学第一、第二定律出发,可以得到一系列的麦克斯韦关系,这个也是比较重要的,可以将式子变成想要的形式。再之后就是要知道一些重要的物理量定义——内能、焓、熵、自由能,等等。

  热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=-W+Q时,通常有如下规定:

  系统对外界做功,W0,即W为正值。外界对系统做功,W0,即W为负值。系统从外界吸收热量,Q0,即Q为正值。系统对外界放出热量,Q0,即Q为负值。系统内能增加,△U0,即△U为正值。系统内能减少,△U0,即△U为负值。

  展开全部对于能量和粒子数固定的孤立系统,采用微正则系综;对于可以和大热源交换能量但粒子数固定的系统,采用正则系综;对于可以和大热源交换能量和粒子的系统,采用巨正则系综。

  展开全部系综(ensemble):在一定的宏观条件下,大量性质和结构完全相同的、处于各种运动状态的、各自独立的系统的集合。全称为统计系综。 系综是用统计方法描述热力学系统的统计规律性时引入的一个基本概念;是统计理论的一种表述方式。

  系统的一种可能的运动状态,可用相宇(相空间)中的一个相点表示,随着时间的推移,系统的运动状态改变了,相应的相点在相宇中运动,描绘出一条轨迹,由大量系统构成的系综则可表为相宇中大量相点的集合,随着时间的推移,各个相点分别沿各自的轨迹运动,类似于流体的流动。

  若系统具有s个自由度,则相宇是以s个广义坐标p(详写为p、p2……ps)和s个广义动量q(详写为q1、q2……qs)为直角坐标构成的2s维空间。在相宇内任一点(p,q)附近单位相体积元内的相点数目D(p,q,t)称为密度函数。D(p,q,t)在整个相宇的积分等于全部相点数,即等于系综所包含的全部系统数N,与时间t无关。定义ρ(p,q,t)=D(p,q,t)/N,称为系综的概率密度函数。ρ(p,q,t)dp dq表示在t时刻出现在(p,q)点附近相体积元dp dq内的相点数在全部相点数中所占的比值,即表示任一系统在t时刻其运动状态处于(p,q)附近的相体积元dp dq内的概率。显然 ,概率密度函数ρ(p,q,t)满足归一化条件∫ρ(p,q,t)dpdq=1。 统计物理学的认为系统的任意宏观量I(t)是相应微观量L(p,q)在一定宏观条件下对系统一切可能的微观运动状态的统计平均值,即I(t)=∫L(p,q)ρ(p,q,t)dp dq。由此可见,经典统计物理的基本课题是确定各种条件下系综的概率密度函数ρ(p,q,t),ρ确定后,即可对相应的热力学系统的宏观性质作出统计描述。这就是统计系综的方法。

  ρ(p,q,金沙js77999t)的具体形式与系统所处的宏观状态有关。如果系统处于平衡态,则ρ=ρ(p,q)不显含时间t,在平衡态的系综理论中,由能量、体积和粒子数都固定的系统构成的统计系综称为微正则系综;由与温度恒定的大热源接触,具有确定粒子数和体积的系统构成的统计系综称为正则系综;由与温度恒定的大热源和化学势恒定的大粒子源接触,具有确定体积的系统构成的统计系综称为巨正则系综。

  上述各种统计系综都有各自的概率密度函数。在微正则系综中,系统处于所有可能的微观状态上的概率都相等,即概率密度是不随时间改变的常数,这就是等概率原理。等概率原理是平衡态统计物理的基本假设,它的正确性由它的推论与实际相符而得到肯定。由微正则系统可以推导出其它系综的概率分布函数的形式。

上一篇:没有了

网友评论

我的2016年度评论盘点
还没有评论,快来抢沙发吧!